cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318132 Number of non-isomorphic set-systems (finite sets of finite nonempty sets) with union {1,2,...,n} and intersection {}.

Original entry on oeis.org

1, 0, 2, 26, 1884, 18660728, 12813206113141264, 33758171486592987125648226573752576, 1435913805026242504952006868879460423733630400489039411798068453617852416
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 26 set-systems:
  {{1},{2,3}}
  {{1},{2},{3}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,2},{1,3}}
  {{1},{2},{1,3},{2,3}}
  {{1},{2},{1,2},{1,2,3}}
  {{1},{2},{1,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3}}
  {{1},{1,2},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3}}
  {{1},{2},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#===Range[n],Intersection@@#=={}]&]]],{n,4}]

Formula

a(n) = A055621(n) - 2*A055621(n-1) = A000612(n) - 3*A000612(n-1) + 2*A000612(n-2) for n >= 2. - Andrew Howroyd, Jan 29 2024

Extensions

a(5) onwards from Andrew Howroyd, Jan 29 2024