cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318145 Numbers m such that 2^phi(m) mod m is a perfect power other than 1.

Original entry on oeis.org

6, 12, 14, 20, 24, 28, 30, 40, 48, 56, 60, 62, 70, 72, 80, 84, 96, 112, 120, 124, 126, 132, 140, 144, 168, 176, 192, 198, 208, 224, 240, 248, 252, 254, 260, 272, 286, 288, 320, 336, 340, 344, 384, 390, 396, 408, 430, 448, 456, 480, 496, 504, 508, 510, 532
Offset: 1

Views

Author

Peter Luschny, Sep 01 2018

Keywords

Comments

All terms are even, as 2^phi(m) == 1 (mod m) if m is odd. - Robert Israel, Sep 02 2018
Perfect power terms are 144, 576, 900, 1600, 3136, 9216, 12544, 20736, 36864, 57600, 63504, ... - Altug Alkan, Sep 04 2018

Crossrefs

Cf. A000010, A001597, A318623. Contains A139257.

Programs

  • Maple
    ispow:= proc(n) local F;
      F:= map(t -> t[2], ifactors(n)[2]);
      igcd(op(F)) > 1
    end proc:
    select(m -> ispow(2 &^ numtheory:-phi(m) mod m), [seq(i,i=2..1000,2)]); # Robert Israel, Sep 02 2018
  • Mathematica
    okQ[n_] := GCD @@ FactorInteger[PowerMod[2, EulerPhi[n], n]][[All, 2]] > 1;
    Select[Range[2, 1000, 2], okQ] (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    def isA318145(n):
        m = power_mod(2, euler_phi(n), n)
        return m > 0 and m.is_perfect_power()
    def A318145_list(search_bound):
        return [n for n in range(2, search_bound + 1, 2) if isA318145(n)]
    print(A318145_list(532))

Extensions

Definition corrected by Robert Israel, Sep 02 2018