A318145 Numbers m such that 2^phi(m) mod m is a perfect power other than 1.
6, 12, 14, 20, 24, 28, 30, 40, 48, 56, 60, 62, 70, 72, 80, 84, 96, 112, 120, 124, 126, 132, 140, 144, 168, 176, 192, 198, 208, 224, 240, 248, 252, 254, 260, 272, 286, 288, 320, 336, 340, 344, 384, 390, 396, 408, 430, 448, 456, 480, 496, 504, 508, 510, 532
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
ispow:= proc(n) local F; F:= map(t -> t[2], ifactors(n)[2]); igcd(op(F)) > 1 end proc: select(m -> ispow(2 &^ numtheory:-phi(m) mod m), [seq(i,i=2..1000,2)]); # Robert Israel, Sep 02 2018
-
Mathematica
okQ[n_] := GCD @@ FactorInteger[PowerMod[2, EulerPhi[n], n]][[All, 2]] > 1; Select[Range[2, 1000, 2], okQ] (* Jean-François Alcover, Aug 02 2019 *)
-
Sage
def isA318145(n): m = power_mod(2, euler_phi(n), n) return m > 0 and m.is_perfect_power() def A318145_list(search_bound): return [n for n in range(2, search_bound + 1, 2) if isA318145(n)] print(A318145_list(532))
Extensions
Definition corrected by Robert Israel, Sep 02 2018
Comments