A318262 Numbers m such that 2^phi(m) mod m is a prime power (in the sense of A246655).
6, 12, 14, 20, 24, 28, 30, 40, 48, 56, 60, 62, 72, 80, 84, 96, 112, 120, 124, 126, 144, 168, 192, 224, 240, 248, 252, 254, 272, 288, 320, 336, 340, 384, 408, 448, 480, 496, 504, 508, 510, 544, 576, 584, 640, 672, 680, 768, 816, 896, 960, 992, 1008, 1016, 1020
Offset: 1
Keywords
Examples
The odd part of the first few terms can be arranged as follows: 3, 3, 7, 5, 3, 7, 15, 5, 3, 7, 15, 31, 9, 5, 21, 3, 7, 15, 31, 63, 9, 21, 3, 7, 15, 31, 63, 127, 17, 9, 5, 21, 85,
Programs
-
Mathematica
Select[Range[2^10], And[PrimePowerQ@ #, ! PrimeQ@ #] &@ Mod[2^EulerPhi@ #, #] &] (* Michael De Vlieger, Sep 04 2018 *)
-
PARI
isok(n) = isprimepower(lift(Mod(2, n)^eulerphi(n))); \\ Michel Marcus, Sep 06 2018
-
Sage
def isA318262(n): m = power_mod(2, euler_phi(n), n) return m.is_prime_power() def A318262_list(search_bound): return [n for n in range(2,search_bound+1,2) if isA318262(n)] print(A318262_list(1020))
Comments