A318147 Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.
1, 0, 1, 0, -9, 10, 0, 477, -756, 280, 0, -74601, 142362, -83160, 15400, 0, 25740261, -55429920, 40900860, -12612600, 1401400, 0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400, 190590400
Offset: 0
Examples
[0] [1] [1] [0, 1] [2] [0, -9, 10] [3] [0, 477, -756, 280] [4] [0, -74601, 142362, -83160, 15400] [5] [0, 25740261, -55429920, 40900860, -12612600, 1401400] [6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400]
Crossrefs
Programs
-
Maple
# See A318146 for the missing functions. FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]);
-
Mathematica
(* OmegaPolynomials are defined in A318146 *) Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten
-
Sage
# See A318146 for the function OmegaPolynomial. [list(OmegaPolynomial(3, n)) for n in (0..6)]
Formula
Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 3 (for other cases see the cross-references).
Comments