cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318149 e-numbers of free pure symmetric multifunctions with one atom.

Original entry on oeis.org

1, 4, 16, 36, 128, 256, 441, 1296, 2025, 16384, 21025, 65536, 77841, 194481, 220900, 279936, 1679616, 1803649, 4100625, 4338889, 268435456, 273571600, 442050625, 449482401, 1801088541, 4294967296, 4334247225, 6059221281
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[].

Examples

			The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins:
       1: o
       4: o[o]
      16: o[o,o]
      36: o[o][o]
     128: o[o[o]]
     256: o[o,o,o]
     441: o[o,o][o]
    1296: o[o][o,o]
    2025: o[o][o][o]
   16384: o[o,o[o]]
   21025: o[o[o]][o]
   65536: o[o,o,o,o]
   77841: o[o,o,o][o]
  194481: o[o,o][o,o]
  220900: o[o,o][o][o]
  279936: o[o][o[o]]
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1];
    rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    exp[n_]:=If[n==1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
    Select[Range[nn],FreeQ[exp[#],_[]]&]
  • Python
    See Neder link.

Extensions

a(16)-a(27) from Charlie Neder, Sep 01 2018