A318152 e-numbers of unlabeled rooted trees. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k > 0 and y_1, ..., y_k already in the sequence.
1, 4, 16, 128, 256, 16384, 65536, 268435456, 4294967296, 562949953421312, 9007199254740992, 72057594037927936, 18446744073709551616, 316912650057057350374175801344, 81129638414606681695789005144064, 5192296858534827628530496329220096
Offset: 1
Keywords
Examples
The sequence contains 16384 = 2^14 = 2^(prime(1) * prime(4)) because 1 and 4 both already belong to the sequence. The sequence of unlabeled rooted trees with e-numbers in the sequence begins: 1: o 4: (o) 16: (oo) 128: ((o)) 256: (ooo) 16384: (o(o)) 65536: (oooo) . (oo(o)) . (ooooo) . ((o)(o)) ((oo)) (ooo(o)) (oooooo) (o(o)(o)) (o(oo)) (oooo(o)) (ooooooo) (oo(o)(o))
Crossrefs
Programs
-
Mathematica
baQ[n_]:=Or[n==1,MatchQ[FactorInteger[n],{{2,?(And@@Cases[FactorInteger[#],{p,k_}:>baQ[PrimePi[p]]]&)}}]]; Select[2^Range[0,50],baQ]
Comments