A318156 Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).
0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 18 2021: (Start) Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are: (2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7) (9,8) (4,1) (5,2) (6,3) (7,4) (8,5) (9,6) (10,7) (6,1) (7,2) (8,3) (9,4) (10,5) (11,6) (8,1) (9,2) (10,3) (11,4) (12,5) (10,1) (11,2) (12,3) (13,4) (12,1) (13,2) (14,3) (6,4,2,1) (14,1) (15,2) (6,4,3,2) (16,1) (8,4,2,1) (6,5,4,2) (8,4,3,2) (8,6,2,1) (10,4,2,1) Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1. (End)
Links
- Joerg Arndt, Matters Computational (The Fxtbook), section 16.4.2 "Partitions into distinct parts", page 350.
- Index entries for sequences related to partitions
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1)))) end: a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..60);
-
Mathematica
nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x] nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x] Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)
Formula
a(n) ~ exp(Pi*sqrt(n/3)) * 3^(1/4) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018
Comments