cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318160 Number of compositions of n into exactly n nonnegative parts with largest part ceiling(n/2).

Original entry on oeis.org

1, 1, 1, 6, 18, 50, 195, 392, 1652, 2970, 12825, 22022, 96030, 160888, 705341, 1162800, 5116200, 8335338, 36773397, 59366450, 262462010, 420630210, 1862790699, 2967563040, 13160496684, 20861295000, 92624149475, 146203657992, 649794035142, 1021964428880
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2018

Keywords

Examples

			a(3) = 6: 012, 021, 102, 120, 201, 210.
a(4) = 18: 0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200.
a(5) = 50: 00023, 00032, 00113, 00131, 00203, 00230, 00302, 00311, 00320, 01013, 01031, 01103, 01130, 01301, 01310, 02003, 02030, 02300, 03002, 03011, 03020, 03101, 03110, 03200, 10013, 10031, 10103, 10130, 10301, 10310, 11003, 11030, 11300, 13001, 13010, 13100, 20003, 20030, 20300, 23000, 30002, 30011, 30020, 30101, 30110, 30200, 31001, 31010, 31100, 32000.
		

Crossrefs

Bisections give: A318161 (even part), A318162 (odd part).
Cf. A180281.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n - j, i - 1, k], {j, 0, Min[n, k]}]]];
    a[n_] := If[n == 0, 1, b[n, n, Ceiling[n/2]] - b[n, n, Ceiling[n/2] - 1]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 28 2022, after Alois P. Heinz in A180281 *)

Formula

a(n) = A180281(n,ceiling(n/2)).
a(n) = 3^(3*n/2 - 7/4 + (-1)^n/4) * sqrt(n/Pi) / 2^(n - 3/2). - Vaclav Kotesovec, Sep 21 2019