cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318162 Number of compositions of 2n-1 into exactly 2n-1 nonnegative parts with largest part n.

Original entry on oeis.org

1, 6, 50, 392, 2970, 22022, 160888, 1162800, 8335338, 59366450, 420630210, 2967563040, 20861295000, 146203657992, 1021964428880, 7127260128736, 49606676100234, 344658278690250, 2390849931605590, 16561583202364200, 114577083158683530, 791757148201073670
Offset: 1

Views

Author

Alois P. Heinz, Aug 19 2018

Keywords

Examples

			a(1) = 1: 1.
a(2) = 6: 012, 021, 102, 120, 201, 210.
a(3) = 50: 00023, 00032, 00113, 00131, 00203, 00230, 00302, 00311, 00320, 01013, 01031, 01103, 01130, 01301, 01310, 02003, 02030, 02300, 03002, 03011, 03020, 03101, 03110, 03200, 10013, 10031, 10103, 10130, 10301, 10310, 11003, 11030, 11300, 13001, 13010, 13100, 20003, 20030, 20300, 23000, 30002, 30011, 30020, 30101, 30110, 30200, 31001, 31010, 31100, 32000.
		

Crossrefs

Bisection of A318160 (odd part).
Cf. A180281.

Programs

  • Maple
    a:= proc(n) option remember; (2*n-1)*`if`(n<3, n,
          3*(3*n-4)*(3*n-5)*a(n-1)/(2*(n-1)*(2*n-3)^2))
        end:
    seq(a(n), n=1..30);
  • Mathematica
    Flatten[{1, Table[2*(2*n - 1)*Binomial[3*n - 4, n-2], {n, 2, 20}]}] (* Vaclav Kotesovec, Sep 20 2019 *)

Formula

a(n) = A180281(2n-1,n).
For n>1, a(n) = 2*(2*n - 1) * binomial(3*n - 4, n-2). - Vaclav Kotesovec, Sep 20 2019