cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318165 The n^n dots problem: minimal number of straight lines (connected at their endpoints) required to pass through n^n dots arranged in an n X n X ... X n grid.

Original entry on oeis.org

1, 3, 13
Offset: 1

Views

Author

Marco Ripà, Aug 20 2018

Keywords

Comments

A generalization of the well-known "Nine Dots Problem".
For any n > 3, an upper bound for this problem is given by U(n) := (t + 1)*n^(n - 3) - 1, where "t" is the best known solution for the corresponding n X n X n case, and (for any n > 5) t = floor((3/2)*n^2) - floor((n - 1)/4) + floor((n + 1)/4) - floor((n - 2)/4) + floor(n/2) + n - 2 (e.g., U(4) = 95, since 23 is the current upper bound for the 4 X 4 X 4 problem). In particular, it is easily possible to prove the existence of an Hamiltonian path without self crossing such that U(4) = 95 (in fact, an Hamiltonian path with link-length 23 for the 4 X 4 X 4 problem was explicitly shown in June 2020).
A (trivial) lower bound is given by B(n):= (n^n - 1)/(n - 1). - Marco Ripà, Aug 25 2020

Examples

			For n = 3, a(3) = 13. You cannot touch (the centers of) the 3 X 3 X 3 dots using fewer than 13 straight lines, following the "Nine Dots Puzzle" basic rules.
		

Crossrefs

Extensions

a(3) corrected by Marco Ripà, Aug 25 2020