A318167 Numbers k such that both k and k+1 are bi-unitary abundant numbers.
21735, 21944, 43064, 49664, 58695, 76544, 106784, 135135, 144584, 160544, 188055, 209055, 227744, 256095, 262184, 300104, 345344, 348704, 382304, 387584, 407295, 409184, 414855, 437535, 498015, 520695, 560384, 567944, 611415, 679455, 687015, 705375, 709695
Offset: 1
Keywords
Examples
21735 is in the sequence since both 21735 and 21736 are bi-unitary abundant numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; seq={}; n=1; While[Length[seq]<32,If[bAbundantQ[n] && bAbundantQ [n+1],AppendTo[seq,n]];n++];seq
-
PARI
a188999(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); } isok(n) = (a188999(n) > 2*n) && (a188999(n+1) > 2*(n+1)); \\ Michel Marcus, Aug 21 2018
Comments