cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318167 Numbers k such that both k and k+1 are bi-unitary abundant numbers.

Original entry on oeis.org

21735, 21944, 43064, 49664, 58695, 76544, 106784, 135135, 144584, 160544, 188055, 209055, 227744, 256095, 262184, 300104, 345344, 348704, 382304, 387584, 407295, 409184, 414855, 437535, 498015, 520695, 560384, 567944, 611415, 679455, 687015, 705375, 709695
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

The bi-unitary version of A096399.

Examples

			21735 is in the sequence since both 21735 and 21736 are bi-unitary abundant numbers.
		

Crossrefs

Cf. A096399 (analog for sigma), A188999 (bi-unitary sigma).
Cf. A292982 (bi-unitary abundant), A293186 (odd bi-unitary abundant).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; seq={}; n=1; While[Length[seq]<32,If[bAbundantQ[n] && bAbundantQ [n+1],AppendTo[seq,n]];n++];seq
  • PARI
    a188999(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = (a188999(n) > 2*n) && (a188999(n+1) > 2*(n+1)); \\ Michel Marcus, Aug 21 2018