cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318179 Expansion of e.g.f. exp((1 - exp(-4*x))/4).

Original entry on oeis.org

1, 1, -3, 5, 25, -343, 2133, -3603, -112975, 1938897, -18008275, 55198805, 1753746377, -45801271943, 649021707397, -4682002329795, -50792700319903, 2692784088681889, -59182401177647011, 801759226622986917, -2169423359710146183, -263145142263538606519, 9869607872225170545333
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 20 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(exp((1-exp(-4*x))/4),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[(1 - Exp[-4 x])/4], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-4)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 22}]
    a[n_] := a[n] = Sum[(-4)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
    Table[(-4)^n BellB[n, -1/4], {n, 0, 22}] (* Peter Luschny, Aug 20 2018 *)

Formula

a(n) = Sum_{k=0..n} (-4)^(n-k)*Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-4)^(k-1)*binomial(n-1,k-1)*a(n-k).
a(n) = (-4)^n*BellPolynomial_n(-1/4). - Peter Luschny, Aug 20 2018