cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318182 Numbers m such that A049417(A049417(m)) = k*m for some k where A049417 is the infinitary sigma function.

Original entry on oeis.org

1, 2, 8, 9, 10, 15, 18, 24, 30, 60, 720, 1020, 4080, 8925, 14688, 14976, 16728, 17850, 35700, 36720, 37440, 66912, 71400, 285600, 308448, 381888, 428400, 602208, 636480, 763776, 856800, 1321920, 1505520, 3011040, 3084480, 21679488, 22276800, 30844800
Offset: 1

Views

Author

Michel Marcus, Aug 20 2018

Keywords

Comments

a(86) > 3*10^11. All the prime factors of the first 85 terms belong to the set {2, 3, 5, 7, 11, 13, 17, 41, 43, 257}. - Giovanni Resta, Aug 25 2018
Like in A019278, here there are many instances where if x is a term, then A049417(x) is also a term.
Additionally, there exist longer chains of 3 or 4 elements like:
- 8 (3), 15 (4), 24 (5), 60 (6);
- 9 (2), 10 (3), 18 (4), 30 (5);
- 31615920 (4), 50585472 (5), 126463680 (6), 252927360 (12);
- 963407296051200 (16), 3134896756992000 (17), 15414516736819200 (18);
- 3541951043592192 (5), 8854877608980480 (6), 17709755217960960 (12), 53129265653882880 (20);
- 4829933241262080 (11), 17709755217960960 (12), 53129265653882880 (20);
7871002319093760 (9), 26564632826941440 (10), 70839020871843840 (13), 265646328269414400 (14).

Crossrefs

Cf. A049417 (infinitary sigma).
Cf. A019278 (analog for sigma), A318175 (analog for bi-unitary sigma).

Programs

  • PARI
    a049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)));}
    isok(n) = frac(a049417(a049417(n))/n) == 0;

Extensions

More terms from Giovanni Resta, Aug 25 2018