cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318174 Expansion of Hypergeometric function F(5/12, 13/12; 2; 1728*x) in powers of x.

Original entry on oeis.org

1, 390, 331500, 355699500, 428760177300, 554472661284360, 751706507941225200, 1054268377387568343000, 1516916483664479584186500, 2226631142488300765641223800, 3321243012135549422030449420080, 5019605916068500831023292873530000, 7670343963284674539098285610205650000
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2018

Keywords

Comments

A145492 is the convolution of A092870 and this sequence.

Crossrefs

F([b/2]+5/12, [(b+1)/2]+1/12; b+1; 1728*x): A092870 (b=0), this sequence (b=1), A318200 (b=2), A318201 (b=3).
Cf. A145492.

Programs

  • PARI
    {a(n) = 12^n/(n!*(n+1)!)*prod(k=0, n-1, (12*k+5)*(12*k+13))}

Formula

a(n) = (12^n/(n!*(n+1)!)) * Product_{k=0..n-1} (12k+5)*(12k+13).
a(n) = (12*n+1)*A092870(n)/(n+1).
a(n) ~ 12^(3*n + 1) / (Gamma(1/12) * Gamma(5/12) * n^(3/2)). - Vaclav Kotesovec, Aug 21 2018

A318201 Expansion of Hypergeometric function F(17/12, 25/12; 4; 1728*x) in powers of x.

Original entry on oeis.org

1, 1275, 1641690, 2198770140, 3046553083980, 4336768315045530, 6307588582660665300, 9334870668704489748840, 14013762435241053769769940, 21290019308561214243784932180, 32671991169676632627962261307000, 50573696461217634323724960067290000, 78871365421150941315659866056940998000
Offset: 0

Views

Author

Seiichi Manyama, Aug 21 2018

Keywords

Comments

A145494 is the convolution of A092870 and this sequence.

Crossrefs

F([b/2]+5/12, [(b+1)/2]+1/12; b+1; 1728*x): A092870 (b=0), A318174 (b=1), A318200 (b=2), this sequence (b=3).
Cf. A145494.

Programs

  • PARI
    {a(n) = 6*12^n/(n!*(n+3)!)*prod(k=0, n-1, (12*k+17)*(12*k+25))}

Formula

a(n) = (6*12^n/(n!*(n+3)!)) * Product_{k=0..n-1} (12k+17)*(12k+25).
a(n) = 6*(12*n+1)*(12*n+5)*(12*n+13)*A092870(n)/(65*(n+1)*(n+2)*(n+3)).
a(n) ~ 2^(6*n + 7) * 3^(3*n + 4) / (65 * Gamma(1/12) * Gamma(5/12) * n^(3/2)). - Vaclav Kotesovec, Aug 21 2018
Showing 1-2 of 2 results.