A318206 Numbers having no divisor d > 1 that is a binary palindrome (i.e., an element of A006995).
1, 2, 4, 8, 11, 13, 16, 19, 22, 23, 26, 29, 32, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 64, 67, 71, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 109, 113, 116, 118, 121, 122, 128, 131, 134, 137, 139, 142, 143, 148, 149, 151, 152, 157
Offset: 1
Examples
The nonunit divisors of 22 are 2,11,22 and none of these are binary palindromes.
Crossrefs
Cf. A006995.
Programs
-
Maple
dmax:= 10: # to get all terms with at most dmax binary digits N:= 2^dmax-1: revdigs:= proc(n) local L, Ln, i; L:= convert(n, base, 2); Ln:= nops(L); add(L[i]*2^(Ln-i), i=1..Ln); end proc: P:= {}: for d from 2 to dmax do if d::even then P:= P union {seq(2^(d/2)*x + revdigs(x), x=2^(d/2-1)..2^(d/2)-1)} else m:= (d-1)/2; B:={seq(2^(m+1)*x + revdigs(x), x=2^(m-1)..2^m-1)}; P:= P union B union map(`+`, B, 2^m) fi od: L:= Vector(N,1): for t in P do L[[seq(k,k=t..N,t)]]:= 0 od: select(t -> L[t]=1, [$1..N]); # Robert Israel, Aug 21 2018
-
PARI
isok(n) = #select(x->((binary(x) == Vecrev(binary(x))) && (x>1)), divisors(n)) == 0; \\ Michel Marcus, Aug 21 2018