A318255 Associated Omega numbers of order 3, triangle T(n,k) read by rows for n >= 0 and 0 <= k <= n.
1, 1, 1, 1, 10, -9, 1, 28, -504, 477, 1, 55, -4158, 78705, -74601, 1, 91, -18018, 1432431, -27154764, 25740261, 1, 136, -55692, 11595870, -923261976, 17503377480, -16591655817, 1, 190, -139536, 60087690, -12529983960, 997692516360, -18914487631380, 17929265150637
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 1 [2] 1, 10, -9 [3] 1, 28, -504, 477 [4] 1, 55, -4158, 78705, -74601 [5] 1, 91, -18018, 1432431, -27154764, 25740261 [6] 1, 136, -55692, 11595870, -923261976, 17503377480, -16591655817
Crossrefs
Programs
-
Maple
# The function TNum is defined in A318253. T := (m, n, k) -> `if`(k=0, 1, binomial(m*n-1, m*(n-k))*TNum(m, k)): for n from 0 to 6 do seq(T(3, n, k), k=0..n) od;
-
Sage
# uses[AssociatedOmegaNumberTriangle from A318254] A318255Triangle = lambda dim: AssociatedOmegaNumberTriangle(3, dim) print(A318255Triangle(8))
Formula
T(m, n, k) = binomial(m*n-1, m*(n-k))*A318253(m, k) for k>0 and 1 for k=0. We consider here the case m=3.
Comments