A318146 Coefficients of the Omega polynomials of order 2, triangle T(n,k) read by rows with 0<=k<=n.
1, 0, 1, 0, -2, 3, 0, 16, -30, 15, 0, -272, 588, -420, 105, 0, 7936, -18960, 16380, -6300, 945, 0, -353792, 911328, -893640, 429660, -103950, 10395, 0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135
Offset: 0
Examples
Row n in the triangle below is the coefficient list of OmegaPolynomial(2, n). For other cases than m = 2 see the cross-references. [0] [1] [1] [0, 1] [2] [0, -2, 3] [3] [0, 16, -30, 15] [4] [0, -272, 588, -420, 105] [5] [0, 7936, -18960, 16380, -6300, 945] [6] [0, -353792, 911328, -893640, 429660, -103950, 10395] [7] [0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135]
Links
- Peter Luschny, Table of the first 63 rows.
Crossrefs
Programs
-
Maple
OmegaPolynomial := proc(m, n) local Omega; Omega := m -> hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m): series(Omega(m)^x, z, m*(n+1)): sort(expand((m*n)!*coeff(%, z, n*m)), [x], ascending) end: CL := p -> PolynomialTools:-CoefficientList(p, x): FL := p -> ListTools:-Flatten(p): FL([seq(CL(OmegaPolynomial(2, n)), n=0..8)]); # Alternative: ser := series(sech(z)^(-x), z, 24): row := n -> n!*coeff(ser, z, n): seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..6); # Peter Luschny, Jul 01 2019
-
Mathematica
OmegaPolynomial[m_,n_] := Module [{ }, S = Series[MittagLefflerE[m,z]^x, {z,0,10}]; Expand[(m n)! Coefficient[S,z,n]] ] Table[CoefficientList[OmegaPolynomial[2,n],x], {n,0,7}] // Flatten (* Second program: *) T[n_, k_] := (2n)! SeriesCoefficient[Sech[z]^-x, {z, 0, 2n}, {x, 0, k}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 23 2019, after Peter Luschny *)
-
Sage
def OmegaPolynomial(m, n): R = ZZ[x]; z = var('z') f = [i/m for i in (1..m-1)] h = lambda z: hypergeometric([], f, (z/m)^m) return R(factorial(m*n)*taylor(h(z)^x, z, 0, m*n + 1).coefficient(z, m*n)) [list(OmegaPolynomial(2, n)) for n in (0..6)] # Recursion over the polynomials, returns a list of the first len polynomials: def OmegaPolynomials(m, len, coeffs=true): R = ZZ[x]; B = [0]*len; L = [R(1)]*len for k in (1..len-1): s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1)) B[k] = c = 1 - s.subs(x=1) L[k] = R(expand(s + c*x)) return [list(l) for l in L] if coeffs else L print(OmegaPolynomials(2, 6))
Formula
OmegaPolynomial(m, n) = (m*n)! [z^n] E(m, z)^x where E(m, z) is the Mittag-Leffler function.
OmegaPolynomial(m, n) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m).
The Omega polynomials can be computed by the recurrence P(m, 0) = 1 and for n >= 1 P(m, n) = x * Sum_{k=0..n-1} binomial(m*n-1, m*k)*T(m, n-k)*P(m, k) where T(m, n) are the generalized tangent numbers A318253. A separate computation of the T(m, n) can be avoided, see the Sage implementation below for the details.
T(n, k) = [x^k] (2*n)! [z^(2*n)] sech(z)^(-x). - Peter Luschny, Jul 01 2019
Comments