A318253
Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, -2, 0, 0, 1, -9, 16, 0, 0, 1, -34, 477, -272, 0, 0, 1, -125, 11056, -74601, 7936, 0, 0, 1, -461, 249250, -14873104, 25740261, -353792, 0, 0, 1, -1715, 5699149, -2886735625, 56814228736, -16591655817, 22368256, 0, 0, 1, -6434, 132908041, -574688719793, 122209131374375, -495812444583424, 17929265150637, -1903757312, 0
Offset: 1
[n\k][0 1 2 3 4 5 ...]
------------------------------------------------------------------
[1] 0, 1, 0, 0, 0, 0, ... [A063524]
[2] 0, 1, -2, 16, -272, 7936, ... [A000182]
[3] 0, 1, -9, 477, -74601, 25740261, ... [A293951]
[4] 0, 1, -34, 11056, -14873104, 56814228736, ... [A273352]
[5] 0, 1, -125, 249250, -2886735625, 122209131374375, ... [A318258]
[6] 0, 1, -461, 5699149, -574688719793, 272692888959243481, ...
[A010763]
-
# Prints square array row-wise. The function OmegaPolynomial is defined in A318146.
for n from 1 to 6 do seq(coeff(OmegaPolynomial(n, k), x, 1), k=0..6) od;
# In the sequence format:
0, seq(seq(coeff(OmegaPolynomial(n-k+1, k), x, 1), k=0..n), n=1..9);
# Alternatively, based on the recurrence of the André numbers:
ANum := proc(m, n) option remember; if n = 0 then return 1 fi;
`if`(modp(n, m) = 0, -1, 1); [seq(m*k, k=0..(n-1)/m)];
%%*add(binomial(n, k)*ANum(m, k), k in %) end:
TNum := proc(n,k) if k=1 then 1 elif k=0 or n=1 then 0 else ANum(n, n*k-1) fi end:
for n from 1 to 6 do seq(TNum(n, k), k = 0..6) od;
-
OmegaPolynomial[m_, n_] := Module[{S}, S = Series[MittagLefflerE[m, z]^x, {z, 0, 10}]; Expand[(m*n)! Coefficient[S, z, n]]];
T[n_, k_] := D[OmegaPolynomial[n, k], x] /. x -> 0;
Table[T[n - k, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2023 *)
-
# Prints the array row-wise. The function OmegaPolynomial is in A318146.
for m in (1..6):
print([0] + [list(OmegaPolynomial(m, n))[1] for n in (1..6)])
# Alternatively, based on the recurrence of the André numbers:
@cached_function
def ANum(m, n):
if n == 0: return 1
t = [m*k for k in (0..(n-1)//m)]
s = sum(binomial(n, k)*ANum(m, k) for k in t)
return -s if m.divides(n) else s
def TNum(m, n):
if n == 1: return 1
if n == 0 or m == 1: return 0
return ANum(m, m*n-1)
for m in (1..6): print([TNum(m, n) for n in (0..6)])
A318258
a(n) = [x] OmegaPolynomial(5, n). OmegaPolynomials are defined in A318146.
Original entry on oeis.org
0, 1, -125, 249250, -2886735625, 122209131374375, -14455143383196875000, 4006210678487307667578125, -2297417123000769120910212890625, 2485076260705905645263720799941406250, -4719878705811419698488114573981055908203125
Offset: 0
-
# The function OmegaPolynomial is defined in A318146.
seq(coeff(OmegaPolynomial(5, n), x, 1), n=0..11);
-
LMlist[m_, len_] := Table[(m n)!, {n, 0, len}]*
CoefficientList[Series[Log[MittagLefflerE[m, z]], {z, 0, len}], z];
LMlist[5, 13]
A088874
T(n, k) = [x^k] (2*n)! [z^(2*n)] 1/cos(z)^x, triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 16, 30, 15, 0, 272, 588, 420, 105, 0, 7936, 18960, 16380, 6300, 945, 0, 353792, 911328, 893640, 429660, 103950, 10395, 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 0, 1903757312
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 3
[3] 0, 16, 30, 15
[4] 0, 272, 588, 420, 105
[5] 0, 7936, 18960, 16380, 6300, 945
[6] 0, 353792, 911328, 893640, 429660, 103950, 10395
[7] 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) #09.7.6.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles , JIS 9 (2006) #06.4.1.
- Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
-
ser := series(sec(z)^x, z, 24): row := n -> n!*coeff(ser, z, n):
seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..8); # Peter Luschny, Jul 01 2019
-
T[1, 1] = 1; T[n_, k_] := Sum[(1/2^(j-1))*StirlingS1[j, k-1]*Sum[(-1)^(i + k + n)*(i-j)^(2(n-1)) Binomial[2j, i], {i, 0, j-1}]/j!, {j, 1, n-1}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Vladimir Kruchinin *)
a[n_] := (2n)! SeriesCoefficient[Sec[z]^x, {z, 0, 2n}] // CoefficientList[#, x] &;
Table[a[n], {n, 0, 8}] // Flatten (* Peter Luschny, Jul 01 2019 *)
-
# uses [A241171]
def fr2_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
L = expand(S).list()
return sum(L[k]*binomial(x+k, n) for k in (0..n-1)).list()
A088874_row = lambda n: [(-1)^(n-k)*m for k,m in enumerate(fr2_row(n))]
for n in (0..7): print(A088874_row(n)) # Peter Luschny, Sep 19 2017
A318254
Associated Omega numbers of order 2, triangle T(n,k) read by rows for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, -2, 1, 5, -20, 16, 1, 7, -70, 336, -272, 1, 9, -168, 2016, -9792, 7936, 1, 11, -330, 7392, -89760, 436480, -353792, 1, 13, -572, 20592, -466752, 5674240, -27595776, 22368256, 1, 15, -910, 48048, -1750320, 39719680, -482926080, 2348666880, -1903757312
Offset: 0
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 3, -2]
[3] [1, 5, -20, 16]
[4] [1, 7, -70, 336, -272]
[5] [1, 9, -168, 2016, -9792, 7936]
[6] [1, 11, -330, 7392, -89760, 436480, -353792]
[7] [1, 13, -572, 20592, -466752, 5674240, -27595776, 22368256]
Even-indexed rows of
A220901 (up to signs).
-
# The function TNum is defined in A318253.
T := (m, n, k) -> `if`(k=0, 1, binomial(m*n-1, m*(n-k))*TNum(m, k)):
for n from 0 to 6 do seq(T(2, n, k), k=0..n) od;
-
def AssociatedOmegaNumberTriangle(m, len):
R = ZZ[x]; B = [1]*len; L = [R(1)]*len; T = [[1]]
for k in (1..len-1):
s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1))
B[k] = c = 1 - s.subs(x=1); L[k] = R(expand(s + c*x))
T.append([1] + [binomial(m*k-1, m*(k-j))*B[j] for j in (1..k)])
return T
A318254Triangle = lambda dim: AssociatedOmegaNumberTriangle(2, dim)
print(A318254Triangle(8))
A318147
Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -9, 10, 0, 477, -756, 280, 0, -74601, 142362, -83160, 15400, 0, 25740261, -55429920, 40900860, -12612600, 1401400, 0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400, 190590400
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -9, 10]
[3] [0, 477, -756, 280]
[4] [0, -74601, 142362, -83160, 15400]
[5] [0, 25740261, -55429920, 40900860, -12612600, 1401400]
[6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400]
All row sums are 1, alternating row sums (taken absolute) are
A002115.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(3, n)) for n in (0..6)]
A318148
Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -34, 35, 0, 11056, -16830, 5775, 0, -14873104, 27560780, -15315300, 2627625, 0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625, 0, -495812444583424, 1140896479608800, -948030209181000, 364143337057500, -65706427536750, 4509264634875
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -34, 35]
[3] [0, 11056, -16830, 5775]
[4] [0, -14873104, 27560780, -15315300, 2627625]
[5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]
All row sums are 1, alternating row sums (taken absolute) are
A211212.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(4, n)) for n in (0..6)]
A318255
Associated Omega numbers of order 3, triangle T(n,k) read by rows for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 10, -9, 1, 28, -504, 477, 1, 55, -4158, 78705, -74601, 1, 91, -18018, 1432431, -27154764, 25740261, 1, 136, -55692, 11595870, -923261976, 17503377480, -16591655817, 1, 190, -139536, 60087690, -12529983960, 997692516360, -18914487631380, 17929265150637
Offset: 0
Triangle starts:
[0] 1
[1] 1, 1
[2] 1, 10, -9
[3] 1, 28, -504, 477
[4] 1, 55, -4158, 78705, -74601
[5] 1, 91, -18018, 1432431, -27154764, 25740261
[6] 1, 136, -55692, 11595870, -923261976, 17503377480, -16591655817
-
# The function TNum is defined in A318253.
T := (m, n, k) -> `if`(k=0, 1, binomial(m*n-1, m*(n-k))*TNum(m, k)):
for n from 0 to 6 do seq(T(3, n, k), k=0..n) od;
-
# uses[AssociatedOmegaNumberTriangle from A318254]
A318255Triangle = lambda dim: AssociatedOmegaNumberTriangle(3, dim)
print(A318255Triangle(8))
Showing 1-7 of 7 results.
Comments