cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083061 Triangle of coefficients of a companion polynomial to the Gandhi polynomial.

Original entry on oeis.org

1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0

Views

Author

Hans J. H. Tuenter, Apr 19 2003

Keywords

Comments

This polynomial arises in the setting of a symmetric Bernoulli random walk and occurs in an expression for the even moments of the absolute distance from the origin after an even number of timesteps. The Gandhi polynomial, sequence A036970, occurs in an expression for the odd moments.
When formatted as a square array, first row is A002105, first column is A001147, second column is A001880.
Another version of the triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] = 1; 0, 1; 0, 1, 3; 0, 4, 15, 15; 0, 34, 147, 210, 105; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 07 2004
In A160464 we defined the coefficients of the ES1 matrix. Our discovery that the n-th term of the row coefficients ES1[1-2*m,n] for m>=1, can be generated with rather simple polynomials led to triangle A094665 and subsequently to this one. - Johannes W. Meijer, May 24 2009
Related to polynomials defined in A160485 by a shift of +-1/2 and scaling by a power of 2. - Richard P. Brent, Jul 15 2014

Examples

			Triangle starts (with an additional first column 1,0,0,...):
[1]
[0,      1]
[0,      1,       3]
[0,      4,      15,      15]
[0,     34,     147,     210,     105]
[0,    496,    2370,    4095,    3150,     945]
[0,  11056,   56958,  111705,  107415,   51975,  10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    imax := 6;
    T1(0, x) := 1:
    T1(0, x+1) := 1:
    for i from 1 to imax do
        T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
        dx := degree(T1(i, x)):
        for k from 0 to dx do
            c(k) := coeff(T1(i, x), x, k)
        od:
        T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
    od:
    for i from 0 to imax do
        for j from 0 to i do
            a(i, j) := coeff(T1(i, x), x, j)
        od:
    od:
    seq(seq(a(i, j), j = 0..i), i = 0..imax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    b[0, 0] = 1;
    b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
    a[0, 0] = 1;
    a[n_, k_] := b[n, k]/2^(n - k);
    Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
  • Sage
    # uses[fr2_row from A088874]
    A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
    for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017

Formula

Let T(i, x)=(2x+1)(x+1)T(i-1, x+1)-2x^2T(i-1, x), T(0, x)=1; so that T(1, x)=1+3x; T(2, x)=4+15x+15x^2; T(3, x)=34+147x+210x^2+105x^3, etc. Then the (i, j)-th entry in the table is the coefficient of x^j in T(i, x).
a(n, k)*2^(n-k) = A085734(n, k). - Philippe Deléham, Feb 27 2005

A318146 Coefficients of the Omega polynomials of order 2, triangle T(n,k) read by rows with 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, -2, 3, 0, 16, -30, 15, 0, -272, 588, -420, 105, 0, 7936, -18960, 16380, -6300, 945, 0, -353792, 911328, -893640, 429660, -103950, 10395, 0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135
Offset: 0

Views

Author

Peter Luschny, Aug 22 2018

Keywords

Comments

The name 'Omega polynomial' is not a standard name. The Omega numbers are the coefficients of the Omega polynomials, the associated Omega numbers are the weights of P(m, k) in the recurrence formula given below.
The signed Euler secant numbers appear as values at x=-1 and the signed Euler tangent numbers as the coefficients of x.

Examples

			Row n in the triangle below is the coefficient list of OmegaPolynomial(2, n). For other cases than m = 2 see the cross-references.
[0] [1]
[1] [0,        1]
[2] [0,       -2,         3]
[3] [0,       16,       -30,       15]
[4] [0,     -272,       588,     -420,       105]
[5] [0,     7936,    -18960,    16380,     -6300,      945]
[6] [0,  -353792,    911328,  -893640,    429660,  -103950,    10395]
[7] [0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135]
		

Crossrefs

Variant is A088874 (unsigned).
T(n,1) = A000182(n), T(n,n) = A001147(n).
All row sums are 1, alternating row sums are A028296 (A000364).
A023531 (m=1), this seq (m=2), A318147 (m=3), A318148 (m=4).
Associated Omega numbers: A318254 (m=2), A318255 (m=3).
Coefficients of x for Omega polynomials of all orders are in A318253.

Programs

  • Maple
    OmegaPolynomial := proc(m, n) local Omega;
    Omega := m -> hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m):
    series(Omega(m)^x, z, m*(n+1)):
    sort(expand((m*n)!*coeff(%, z, n*m)), [x], ascending) end:
    CL := p -> PolynomialTools:-CoefficientList(p, x):
    FL := p -> ListTools:-Flatten(p):
    FL([seq(CL(OmegaPolynomial(2, n)), n=0..8)]);
    # Alternative:
    ser := series(sech(z)^(-x), z, 24): row := n -> n!*coeff(ser, z, n):
    seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..6); # Peter Luschny, Jul 01 2019
  • Mathematica
    OmegaPolynomial[m_,n_] :=  Module [{ },
    S = Series[MittagLefflerE[m,z]^x, {z,0,10}];
    Expand[(m n)! Coefficient[S,z,n]] ]
    Table[CoefficientList[OmegaPolynomial[2,n],x], {n,0,7}] // Flatten
    (* Second program: *)
    T[n_, k_] := (2n)! SeriesCoefficient[Sech[z]^-x, {z, 0, 2n}, {x, 0, k}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 23 2019, after Peter Luschny *)
  • Sage
    def OmegaPolynomial(m, n):
        R = ZZ[x]; z = var('z')
        f = [i/m for i in (1..m-1)]
        h = lambda z: hypergeometric([], f, (z/m)^m)
        return R(factorial(m*n)*taylor(h(z)^x, z, 0, m*n + 1).coefficient(z, m*n))
    [list(OmegaPolynomial(2, n)) for n in (0..6)]
    # Recursion over the polynomials, returns a list of the first len polynomials:
    def OmegaPolynomials(m, len, coeffs=true):
        R = ZZ[x]; B = [0]*len; L = [R(1)]*len
        for k in (1..len-1):
            s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1))
            B[k] = c = 1 - s.subs(x=1)
            L[k] = R(expand(s + c*x))
        return [list(l) for l in L] if coeffs else L
    print(OmegaPolynomials(2, 6))

Formula

OmegaPolynomial(m, n) = (m*n)! [z^n] E(m, z)^x where E(m, z) is the Mittag-Leffler function.
OmegaPolynomial(m, n) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m).
The Omega polynomials can be computed by the recurrence P(m, 0) = 1 and for n >= 1 P(m, n) = x * Sum_{k=0..n-1} binomial(m*n-1, m*k)*T(m, n-k)*P(m, k) where T(m, n) are the generalized tangent numbers A318253. A separate computation of the T(m, n) can be avoided, see the Sage implementation below for the details.
T(n, k) = [x^k] (2*n)! [z^(2*n)] sech(z)^(-x). - Peter Luschny, Jul 01 2019

A085734 Triangle read by rows: T(0,0) = 1, T(n,k) = Sum_{j=max(0,1-k)..n-k} (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j).

Original entry on oeis.org

1, 2, 3, 16, 30, 15, 272, 588, 420, 105, 7936, 18960, 16380, 6300, 945, 353792, 911328, 893640, 429660, 103950, 10395, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 1903757312, 5464904448, 6327135360, 3918554640, 1427025600, 310269960, 37837800, 2027025
Offset: 0

Views

Author

Philippe Deléham, Jul 20 2003

Keywords

Comments

A triangle related to Euler numbers and tangent numbers.
T(n,k) = number of down-up permutations on [2n+2] with k+1 left-to-right maxima. For example, T(1,1) counts the following 3 down-up permutations on [4] each with 2 left-to-right maxima: 2143, 3142, 3241. - David Callan, Oct 25 2004
It appears that Sum_{k=0..n} (-1)^(n-k)*T(n,k)*x^(k+1) is the zeta polynomial for the poset of even-sized subsets of [2n+2] ordered by inclusion. - Geoffrey Critzer, Apr 22 2023

Examples

			Triangle begins as:
    1;
    2,   3;
   16,  30,  15;
  272, 588, 420, 105; ...
		

Crossrefs

T(n, 0) = A000182(n), tangent numbers, T(n, n) = A001147(n+1), Sum_{k>=0} T(n, k) = A000364(n+1), Euler numbers.
Cf. A088874.
A subtriangle of A098906.

Programs

  • Mathematica
    t[n_, k_]:= t[n, k] = Sum[(2^j)*(Binomial[k+j, 1+j] + Binomial[k+j+1, 1+j])*t[n-1, k-1+j], {j, Max[0, 1-k], n-k}]; t[0, 0] = 1; Table[t[n, k], {n,0,7}, {k,0,n}]//Flatten (* Jean-François Alcover, Feb 26 2013 *)
  • Maxima
    T(n,m):=sum((stirling1(k,m)*sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+m+i),i,0,k-1))/(2^(k-1)*k!),k,1,n); /* Vladimir Kruchinin, May 20 2013 */
    
  • PARI
    {T(n,k) = if(n==0 && k==0, 1, sum(j=max(0, 1-k), n-k, (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j)))};
    for(n=0,5, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 21 2019
    
  • Sage
    @CachedFunction
    def T(n,k):
        if n==0 and k==0: return 1
        else: return sum((2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j) for j in (max(0, 1-k)..(n-k)))
    [[T(n, k) for k in (0..n)] for n in (0..7)] # G. C. Greubel, Mar 21 2019

Formula

T(n, k) = A083061(n, k)*2^(n-k). - Philippe Deléham, Feb 27 2005
E.g.f.: sec(x)^y. - Vladeta Jovovic, May 20 2007
T(n,m) = Sum_{k=1..n} (Stirling1(k,m)*Sum_{i=0..k-1} (i-k)^(2*n)* binomial(2*k,i)*(-1)^(n+m+i))/(2^(k-1)*k!). - Vladimir Kruchinin, May 20 2013

Extensions

Edited and extended by Ray Chandler, Nov 23 2003

A126159 a(n) = Sum_{k=0..n} C(2n,k)*A126155(n,k).

Original entry on oeis.org

1, 12, 624, 72768, 15073536, 4879690752, 2275446779904, 1444596033404928, 1198103353905709056, 1257795823373397000192, 1630379271356490615619584, 2557344389023281412086693888, 4774145871907749099664809394176
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2006

Keywords

Examples

			a(1) = 1*(1) + 2*(5) + 1*(1) = 12;
a(2) = 1*(7) + 4*(35) + 6*(55) + 4*(35) + 1*(7) = 624;
a(3) = 1*(139) + 6*(695) + 15*(1195) + 20*(1415) + 15*(1195) + 6*(695) + 1*(139) = 72768.
		

Crossrefs

Cf. A126155.

Formula

a(n) = 4^n*Sum_{k=0..n} 2^(n-k)*3^k*A088874(n,k). - Philippe Deléham, Dec 21 2006
Showing 1-4 of 4 results.