A083061
Triangle of coefficients of a companion polynomial to the Gandhi polynomial.
Original entry on oeis.org
1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0
Triangle starts (with an additional first column 1,0,0,...):
[1]
[0, 1]
[0, 1, 3]
[0, 4, 15, 15]
[0, 34, 147, 210, 105]
[0, 496, 2370, 4095, 3150, 945]
[0, 11056, 56958, 111705, 107415, 51975, 10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
(End)
-
imax := 6;
T1(0, x) := 1:
T1(0, x+1) := 1:
for i from 1 to imax do
T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
dx := degree(T1(i, x)):
for k from 0 to dx do
c(k) := coeff(T1(i, x), x, k)
od:
T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
od:
for i from 0 to imax do
for j from 0 to i do
a(i, j) := coeff(T1(i, x), x, j)
od:
od:
seq(seq(a(i, j), j = 0..i), i = 0..imax);
# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
b[0, 0] = 1;
b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
a[0, 0] = 1;
a[n_, k_] := b[n, k]/2^(n - k);
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
-
# uses[fr2_row from A088874]
A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017
A318146
Coefficients of the Omega polynomials of order 2, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -2, 3, 0, 16, -30, 15, 0, -272, 588, -420, 105, 0, 7936, -18960, 16380, -6300, 945, 0, -353792, 911328, -893640, 429660, -103950, 10395, 0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135
Offset: 0
Row n in the triangle below is the coefficient list of OmegaPolynomial(2, n). For other cases than m = 2 see the cross-references.
[0] [1]
[1] [0, 1]
[2] [0, -2, 3]
[3] [0, 16, -30, 15]
[4] [0, -272, 588, -420, 105]
[5] [0, 7936, -18960, 16380, -6300, 945]
[6] [0, -353792, 911328, -893640, 429660, -103950, 10395]
[7] [0, 22368256, -61152000, 65825760, -36636600, 11351340, -1891890, 135135]
Coefficients of x for Omega polynomials of all orders are in
A318253.
-
OmegaPolynomial := proc(m, n) local Omega;
Omega := m -> hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m):
series(Omega(m)^x, z, m*(n+1)):
sort(expand((m*n)!*coeff(%, z, n*m)), [x], ascending) end:
CL := p -> PolynomialTools:-CoefficientList(p, x):
FL := p -> ListTools:-Flatten(p):
FL([seq(CL(OmegaPolynomial(2, n)), n=0..8)]);
# Alternative:
ser := series(sech(z)^(-x), z, 24): row := n -> n!*coeff(ser, z, n):
seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..6); # Peter Luschny, Jul 01 2019
-
OmegaPolynomial[m_,n_] := Module [{ },
S = Series[MittagLefflerE[m,z]^x, {z,0,10}];
Expand[(m n)! Coefficient[S,z,n]] ]
Table[CoefficientList[OmegaPolynomial[2,n],x], {n,0,7}] // Flatten
(* Second program: *)
T[n_, k_] := (2n)! SeriesCoefficient[Sech[z]^-x, {z, 0, 2n}, {x, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 23 2019, after Peter Luschny *)
-
def OmegaPolynomial(m, n):
R = ZZ[x]; z = var('z')
f = [i/m for i in (1..m-1)]
h = lambda z: hypergeometric([], f, (z/m)^m)
return R(factorial(m*n)*taylor(h(z)^x, z, 0, m*n + 1).coefficient(z, m*n))
[list(OmegaPolynomial(2, n)) for n in (0..6)]
# Recursion over the polynomials, returns a list of the first len polynomials:
def OmegaPolynomials(m, len, coeffs=true):
R = ZZ[x]; B = [0]*len; L = [R(1)]*len
for k in (1..len-1):
s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1))
B[k] = c = 1 - s.subs(x=1)
L[k] = R(expand(s + c*x))
return [list(l) for l in L] if coeffs else L
print(OmegaPolynomials(2, 6))
A085734
Triangle read by rows: T(0,0) = 1, T(n,k) = Sum_{j=max(0,1-k)..n-k} (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j).
Original entry on oeis.org
1, 2, 3, 16, 30, 15, 272, 588, 420, 105, 7936, 18960, 16380, 6300, 945, 353792, 911328, 893640, 429660, 103950, 10395, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 1903757312, 5464904448, 6327135360, 3918554640, 1427025600, 310269960, 37837800, 2027025
Offset: 0
Triangle begins as:
1;
2, 3;
16, 30, 15;
272, 588, 420, 105; ...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles , JIS 9 (2006) 06.4.1.
- Tian Han, Sergey Kitaev, and Philip B. Zhang, Distribution of maxima and minima statistics on alternating permutations, Springer numbers, and avoidance of flat POPs, arXiv:2408.12865 [math.CO], 2024. See p. 4.
- Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
T(n, 0) =
A000182(n), tangent numbers, T(n, n) =
A001147(n+1), Sum_{k>=0} T(n, k) =
A000364(n+1), Euler numbers.
-
t[n_, k_]:= t[n, k] = Sum[(2^j)*(Binomial[k+j, 1+j] + Binomial[k+j+1, 1+j])*t[n-1, k-1+j], {j, Max[0, 1-k], n-k}]; t[0, 0] = 1; Table[t[n, k], {n,0,7}, {k,0,n}]//Flatten (* Jean-François Alcover, Feb 26 2013 *)
-
T(n,m):=sum((stirling1(k,m)*sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+m+i),i,0,k-1))/(2^(k-1)*k!),k,1,n); /* Vladimir Kruchinin, May 20 2013 */
-
{T(n,k) = if(n==0 && k==0, 1, sum(j=max(0, 1-k), n-k, (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j)))};
for(n=0,5, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 21 2019
-
@CachedFunction
def T(n,k):
if n==0 and k==0: return 1
else: return sum((2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j) for j in (max(0, 1-k)..(n-k)))
[[T(n, k) for k in (0..n)] for n in (0..7)] # G. C. Greubel, Mar 21 2019
A126159
a(n) = Sum_{k=0..n} C(2n,k)*A126155(n,k).
Original entry on oeis.org
1, 12, 624, 72768, 15073536, 4879690752, 2275446779904, 1444596033404928, 1198103353905709056, 1257795823373397000192, 1630379271356490615619584, 2557344389023281412086693888, 4774145871907749099664809394176
Offset: 0
a(1) = 1*(1) + 2*(5) + 1*(1) = 12;
a(2) = 1*(7) + 4*(35) + 6*(55) + 4*(35) + 1*(7) = 624;
a(3) = 1*(139) + 6*(695) + 15*(1195) + 20*(1415) + 15*(1195) + 6*(695) + 1*(139) = 72768.
Showing 1-4 of 4 results.
Comments