cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179381 Row sums of A179318.

Original entry on oeis.org

1, 2, 4, 10, 26, 78, 236, 770, 2520, 8606, 29364, 103302, 362226, 1298882, 4645670, 16897224, 61296686, 225457006, 826950080, 3067763394, 11353597198, 42414220022, 158095481910, 594108418428, 2227714454332, 8412269224862, 31704876569698, 120223392641084, 455053649594196, 1731861709709542, 6579658381972974
Offset: 1

Views

Author

Alford Arnold, Jul 12 2010

Keywords

Examples

			The table has shape A000041 and begins:
  1
  1 1
  2 1 1
  5 2 1 1 1
  14 5 2 2 1 1 1
so a(n) begins 1 2 4 10 26 ...
		

Crossrefs

Programs

  • Maxima
    C(n):=  1/(n+1)*binomial(2*n,n);
    s(m,n):=if m>n then 0 else if n=m then C(n-1) else sum(C(k-1)*s(k,n-k),k,m,ceiling(n/2))+C(n-1);
    makelist(s(1,n),n,1,27);  /* Vladimir Kruchinin, Sep 06 2014 */
  • PARI
    N = 66;  x = 'x +O('x^N);
    C(n) = binomial(2*n,n)/(n+1);
    gf = -1 + 1/prod(n=1, N, 1 - C(n-1)*x^n );
    Vec(gf)
    \\ Joerg Arndt, Aug 18 2014
    

Formula

G.f.: -1 + Product_{n>=1} 1/(1-C(n-1)*x^n), where C(n) = A000108(n). - Vladimir Kruchinin, Aug 18 2014
a(n) = s(1,n), where s(m,n) = C(n-1)+Sum_{k=m..n/2} C(k-1)*s(k,n-k), s(n,n) = C(n-1), C(n) are the Catalan numbers (A000108). - Vladimir Kruchinin, Sep 06 2014
a(n) ~ c * 4^n / n^(3/2), where c = 1 / (4*sqrt(Pi) * Product_{k>=1} (1 - binomial(2*k-2,k-1) / (k * 4^k))) = 0.2422046382280667... - Vaclav Kotesovec, Mar 08 2018

Extensions

Terms 8606 and beyond (using Kruchinin's formula) by Joerg Arndt, Aug 18 2014

A318248 Expansion of Product_{k>=1} (1 + Fibonacci(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 18, 35, 63, 123, 220, 411, 750, 1387, 2498, 4649, 8308, 15150, 27446, 49638, 88754, 161280, 287831, 516770, 924956, 1655166, 2944850, 5272056, 9348047, 16631195, 29569572, 52421323, 92665614, 164437988, 290243745, 512649342, 904774082
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1 + Fibonacci[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += Fibonacci[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

Formula

From Vaclav Kotesovec, Aug 24 2018: (Start)
a(n) ~ c * A000045(n) * exp(r*sqrt(n)) / n^(3/4) ~ c * exp(r*sqrt(n)) * phi^n / (sqrt(5) * n^(3/4)), where r = 2*sqrt(-polylog(2, -1/sqrt(5))) = 1.273105657580344020952907652385896290122122879833..., c = 0.4521555113342405268628694407039776... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Equivalently, r = 2*sqrt(Pi^2/6 + log(5)^2/8 + polylog(2, -sqrt(5))). (End)

A318263 Expansion of Product_{k>=1} (1 + Lucas(k)*x^k).

Original entry on oeis.org

1, 1, 3, 7, 11, 30, 62, 129, 235, 541, 1034, 2101, 4140, 8129, 15984, 31903, 60398, 117646, 228808, 433768, 836552, 1601282, 3031299, 5736396, 10899112, 20466182, 38556342, 72522116, 135662847, 253047629, 473785878, 878655661, 1634304062, 3033385668, 5608183925
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1+LucasL[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += LucasL[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

Formula

From Vaclav Kotesovec, Aug 24 2018: (Start)
a(n) ~ c * A000032(n) * A000009(n) ~ c * phi^n * exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)), where c = Product_{k>=1} ((1 + Lucas(k)/phi^k)/2) = 0.8503149035690839100210269103058319341315494385103929947491... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Equivalently, c = Product_{k>=1} (1 + (-1)^k/(2*phi^(2*k))),
c = 2/3 * QPochhammer[-1/2, -1/GoldenRatio^2]. (End)
Showing 1-3 of 3 results.