A318284 Number of multiset partitions of a multiset whose multiplicities are the prime indices of n.
1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 15, 15, 26, 22, 21, 29, 19, 30, 36, 31, 30, 66, 38, 42, 52, 56, 52, 47, 45, 57, 92, 77, 67, 77, 74, 101, 98, 135, 64, 137, 97, 176, 135, 109, 109, 118, 105, 231, 249, 97, 141, 181, 139, 297, 198, 385, 195, 269
Offset: 1
Keywords
Examples
The a(12) = 11 multiset partitions of {1,1,2,3}: {{1,1,2,3}} {{1},{1,2,3}} {{2},{1,1,3}} {{3},{1,1,2}} {{1,1},{2,3}} {{1,2},{1,3}} {{1},{1},{2,3}} {{1},{2},{1,3}} {{1},{3},{1,2}} {{2},{3},{1,1}} {{1},{1},{2},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..700
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,60}]
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))} count(sig)={my(n=vecsum(sig), A=O(x*x^vecmax(sig)), s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q,sig[i]))*permcount(p)); s/n!} a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, numbpart(s[1]), count(sig(n))))} \\ Andrew Howroyd, Dec 10 2018
Formula
a(prime(n)^k) = A219727(n,k). - Andrew Howroyd, Dec 10 2018