A318307 Multiplicative with a(p^e) = 2^A002487(e).
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 8, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 16, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[m_] := Module[{a = 1, b = 0, n = m}, While[n > 0, If[OddQ[n], b += a, a += b]; n = Floor[n/2]]; b]; Array[Times @@ Map[2^f@ # &, FactorInteger[#][[All, -1]] ] - Boole[# == 1] &, 105] (* after Jean-François Alcover at A002487 *)
-
PARI
A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487 A318307(n) = factorback(apply(e -> 2^A002487(e),factor(n)[,2]));
-
Python
from functools import reduce from sympy import factorint def A318307(n): return 1<
Chai Wah Wu, May 18 2023