A318321 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A003961.
1, 3, 5, 27, 7, 15, 11, 135, 75, 21, 13, 135, 17, 33, 35, 2835, 19, 225, 23, 189, 55, 39, 29, 675, 147, 51, 625, 297, 31, 105, 37, 15309, 65, 57, 77, 2025, 41, 69, 85, 945, 43, 165, 47, 351, 525, 87, 53, 14175, 363, 441, 95, 459, 59, 1875, 91, 1485, 115, 93, 61, 945, 67, 111, 825, 168399, 119, 195, 71, 513, 145, 231, 73
Offset: 1
Links
Programs
-
PARI
up_to = 16384; A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318321aux = DirSqrt(vector(up_to, n, A003961(n))); A318321(n) = numerator(v318321aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003961(n) - Sum_{d|n, d>1, d 1.
Comments