A318387 Starting with a(1) = 6, a(n) is the smallest number whose sum of prime divisors (taken with multiplicity) is a(n-1). In other words, a(n) = A056240(a(n-1)).
6, 8, 15, 26, 69, 134, 393, 1556, 4659, 9314, 27933, 921327, 85680249, 171360494, 2227686253, 17821489976, 124750429783, 19336316610785, 4544034403522255, 3567067006764843005, 203322819385596050031, 25008706784428314148401, 825287323886134366896771, 91606892951360914725537141, 1923744751978579209236279751
Offset: 1
Keywords
Examples
a(2) = 8, the smallest number whose sopfr is 6: A056240(8) = 6; a(3) = 15, the smallest number whose sopfr is 8: A056240(8) = 15; etc.
Programs
-
Mathematica
With[{s = Array[Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #] &,10^6]}, Nest[Append[#, First@ FirstPosition[s, #[[-1]] ]] &, {6}, 11]] (* Michael De Vlieger, Aug 25 2018 *)
Extensions
a(13)-a(17) from Giovanni Resta, Aug 28 2018
Terms a(18) onward from Max Alekseyev, Sep 20 2024
Comments