A318392 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k.
1, 3, 1, 15, 9, 1, 119, 87, 18, 1, 1343, 1045, 285, 30, 1, 19905, 15663, 4890, 705, 45, 1, 369113, 286419, 95613, 16450, 1470, 63, 1, 8285261, 6248679, 2147922, 410053, 44870, 2730, 84, 1, 219627683, 159648795, 55211229, 11202534, 1394883, 105714, 4662, 108, 1
Offset: 1
Examples
The T(3,2) = 9 pairs of set partitions: {{1},{2},{3}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1},{2,3}} {{1},{2,3}} {{1,2},{3}} {{1},{2},{3}} {{1,2},{3}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1,3},{2}} {{1,3},{2}} Triangle begins: 1 3 1 15 9 1 119 87 18 1 1343 1045 285 30 1 19905 15663 4890 705 45 1
Crossrefs
Programs
-
Mathematica
nn=5;Table[n!*SeriesCoefficient[Sum[BellB[n]^2*x^n/n!,{n,0,nn}]^t,{x,0,n},{t,0,k}],{n,nn},{k,n}]
Formula
E.g.f.: (Sum_{n>=0} B(n)^2 x^n/n!)^t where B = A000110.