cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318393 Regular tetrangle where T(n,k,i) is the number of pairs of set partitions of {1,...,n} with meet of length k and join of length i.

Original entry on oeis.org

1, 1, 2, 1, 1, 6, 3, 8, 6, 1, 1, 14, 7, 48, 36, 6, 56, 44, 12, 1, 1, 30, 15, 200, 150, 25, 560, 440, 120, 10, 552, 440, 140, 20, 1, 1, 62, 31, 720, 540, 90, 3640, 2860, 780, 65, 8280, 6600, 2100, 300, 15, 7202, 5632, 1920, 340, 30, 1, 1, 126, 63, 2408, 1806
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,3,1) = 8 pairs of set partitions:
  {{1},{2},{3}}  {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}
   {{1},{2,3}}  {{1,3},{2}}
   {{1,2},{3}}  {{1},{2,3}}
   {{1,2},{3}}  {{1,3},{2}}
   {{1,3},{2}}  {{1},{2,3}}
   {{1,3},{2}}  {{1,2},{3}}
    {{1,2,3}}  {{1},{2},{3}}
Tetrangle begins:
   1   1     1       1            1
       2 1   6 3     14 7         30  15
             8 6 1   48 36 6      200 150 25
                     56 44 12 1   560 440 120 10
                                  552 440 140 20  1
		

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==j]&]],{n,6},{k,n},{j,k}]