cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318398 Number of triples of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}}.

Original entry on oeis.org

1, 7, 103, 2707, 110857, 6517129, 521167549, 54510591469, 7235648605909, 1190181847444189, 237953165658759679, 56905537750421669449, 16059682765076576965879, 5287171379685771887014489, 2010360123437921314268936809, 875173620070717892287441139989
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}} {{1},{2}}
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n,k]*BellB[k]^3,{k,0,n}],{n,10}]

Formula

a(n) = Sum_{k = 0..n} s(n,k)*B(k)^3 where s = A048994 and B = A000110.

A318815 Number of triples of set partitions of {1,2,...,n} whose join is {{1,2,...,n}}.

Original entry on oeis.org

1, 7, 103, 2773, 117697, 7167619, 590978941, 63385879261, 8584707943381, 1434654097736101, 290409845948305321, 70125579500764771585, 19940633217840575968969, 6603748351832744611210549, 2522614472277243822293033719, 1102166886808604068546379343289
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
   {{1,2}}   {{1,2}}   {{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[n!*SeriesCoefficient[Log[1+Sum[BellB[n]^3*x^n/n!,{n,nn}]],{x,0,n}],{n,nn}]

Formula

Logarithmic transform of A000110(n)^3.
a(n) = Bell(n)^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Bell(n-k)^3 * k * a(k). - Ilya Gutkovskiy, Jan 17 2020

A318816 Regular tetrangle where T(n,k,i) is the number of non-isomorphic multiset partitions of length i of multiset partitions of length k of multisets of size n.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 3, 4, 3, 5, 14, 14, 9, 20, 9, 5, 14, 9, 5, 7, 28, 28, 33, 80, 33, 16, 68, 52, 16, 7, 28, 33, 16, 7, 11, 69, 69, 104, 266, 104, 74, 356, 282, 74, 29, 199, 253, 118, 29, 11, 69, 104, 74, 29, 11, 15, 134, 134, 294, 800, 294, 263, 1427, 1164
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			Tetrangle begins:
  1   2     3        5             7
      2 2   4 4     14 14         28 28
            3 4 3    9 20  9      33 80 33
                     5 14  9  5   16 68 52 16
                                   7 28 33 16  7
Non-isomorphic representatives of the T(4,3,2) = 20 multiset partitions:
  {{{1}},{{1},{1,1}}}  {{{1,1}},{{1},{1}}}
  {{{1}},{{1},{1,2}}}  {{{1,1}},{{1},{2}}}
  {{{1}},{{1},{2,2}}}  {{{1,1}},{{2},{2}}}
  {{{1}},{{1},{2,3}}}  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,1}}}  {{{1,2}},{{1},{1}}}
  {{{1}},{{2},{1,2}}}  {{{1,2}},{{1},{2}}}
  {{{1}},{{2},{1,3}}}  {{{1,2}},{{1},{3}}}
  {{{1}},{{2},{3,4}}}  {{{1,2}},{{3},{4}}}
  {{{2}},{{1},{1,1}}}  {{{2,3}},{{1},{1}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
		

Crossrefs

Showing 1-3 of 3 results.