A318402 Number of sets of nonempty sets whose multiset union is a strongly normal multiset of size n.
1, 2, 6, 20, 74, 311, 1401, 6913, 36376, 205421, 1228288, 7786802, 51937607, 364250763, 2673314121, 20504809133, 163844631872, 1361874185139, 11748149246269, 105029750531640, 971403871953460, 9282643841237360, 91519776792040324, 929892817423282068, 9725646244888190337
Offset: 1
Keywords
Examples
The a(4) = 20 sets of sets: {{1,2,3,4}} {{1},{1,2,3}} {{1},{2,3,4}} {{2},{1,3,4}} {{3},{1,2,4}} {{4},{1,2,3}} {{1,2},{1,3}} {{1,2},{3,4}} {{1,3},{2,4}} {{1,4},{2,3}} {{1},{2},{1,2}} {{1},{2},{1,3}} {{1},{2},{3,4}} {{1},{3},{1,2}} {{1},{3},{2,4}} {{1},{4},{2,3}} {{2},{3},{1,4}} {{2},{4},{1,3}} {{3},{4},{1,2}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)} seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020
Comments