cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318402 Number of sets of nonempty sets whose multiset union is a strongly normal multiset of size n.

Original entry on oeis.org

1, 2, 6, 20, 74, 311, 1401, 6913, 36376, 205421, 1228288, 7786802, 51937607, 364250763, 2673314121, 20504809133, 163844631872, 1361874185139, 11748149246269, 105029750531640, 971403871953460, 9282643841237360, 91519776792040324, 929892817423282068, 9725646244888190337
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(4) = 20 sets of sets:
  {{1,2,3,4}}
  {{1},{1,2,3}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1},{2},{1,2}}
  {{1},{2},{1,3}}
  {{1},{2},{3,4}}
  {{1},{3},{1,2}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{4},{1,2}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020