A318403 Number of strict connected antichains of sets whose multiset union is an integer partition of n.
1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 13, 22, 31
Offset: 0
Examples
The a(1) = 1 through a(10) = 13 clutters: {{1}} {{2}} {{3}} {{4}} {{5}} {{6}} {{7}} {{1,2}} {{1,3}} {{1,4}} {{1,5}} {{1,6}} {{2,3}} {{2,4}} {{2,5}} {{1,2,3}} {{3,4}} {{1,2,4}} {{1,2},{1,3}} . {{8}} {{9}} {{10}} {{1,7}} {{1,8}} {{1,9}} {{2,6}} {{2,7}} {{2,8}} {{3,5}} {{3,6}} {{3,7}} {{1,2,5}} {{4,5}} {{4,6}} {{1,3,4}} {{1,2,6}} {{1,2,7}} {{1,2},{1,4}} {{1,3,5}} {{1,3,6}} {{1,2},{2,3}} {{2,3,4}} {{1,4,5}} {{1,2},{1,5}} {{2,3,5}} {{1,2},{2,4}} {{1,2,3,4}} {{1,3},{1,4}} {{1,2},{1,6}} {{1,3},{2,3}} {{1,2},{2,5}} {{1,3},{1,5}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}]