cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318414 Expansion of Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^(i*j*k).

Original entry on oeis.org

1, 1, 6, 15, 48, 108, 323, 716, 1868, 4217, 10137, 22311, 51477, 110817, 245260, 519918, 1114914, 2318557, 4854952, 9923533, 20335761, 40941170, 82365742, 163413699, 323589060, 633429923, 1236392498, 2390718266, 4606489839, 8805346615, 16768968317, 31713677061, 59747953446
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul((1+x^(i*j*k))^(i*j*k),k=1..55),j=1..55),i=1..55),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[Product[Product[(1 + x^(i j k))^(i j k), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(k Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}]  x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
    nmax = 32; A034718 = Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[A034718[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 31 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*tau_3(k)), where tau_3() = A007425.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^2 * Sum_{j|d} tau(j) ) * x^k/k), where tau() = A000005.
Conjecture: log(a(n)) ~ 3^(2/3) * Zeta(3)^(1/3) * log(n)^(2/3) * n^(2/3) / 2^(5/3). - Vaclav Kotesovec, Sep 02 2018

A318481 Expansion of Product_{i>=1, j>=1, k>=1} 1/(1 - i*j*k*x^(i*j*k)).

Original entry on oeis.org

1, 1, 7, 16, 64, 133, 465, 1008, 3023, 6695, 18206, 40175, 103229, 225470, 549873, 1194620, 2801742, 6015042, 13686306, 29063919, 64424496, 135362432, 293512852, 610061141, 1298516539, 2670738781, 5591712472, 11388116508, 23499720744, 47403692965, 96564236754
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[1/(1-i*j*k*x^(i*j*k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]

A318750 a(n) = Sum_{k=1..n} k * tau_3(k), where tau_3 is A007425.

Original entry on oeis.org

1, 7, 16, 40, 55, 109, 130, 210, 264, 354, 387, 603, 642, 768, 903, 1143, 1194, 1518, 1575, 1935, 2124, 2322, 2391, 3111, 3261, 3495, 3765, 4269, 4356, 5166, 5259, 5931, 6228, 6534, 6849, 8145, 8256, 8598, 8949, 10149, 10272, 11406, 11535, 12327, 13137, 13551
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 100}]]
    (* Asymptotics: *) n^2 * (Log[n]^2 + (6*EulerGamma - 1)*Log[n] + 6*EulerGamma^2 - 3*EulerGamma - 6*StieltjesGamma[1] + 1/2) / 4 (* Vaclav Kotesovec, Sep 09 2018 *)
  • PARI
    tau_3(k) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(k)[, 2]));
    a(n) = sum(k = 1, n,  k * tau_3(k)); \\ Amiram Eldar, Jan 18 2025

Formula

a(n) = Sum_{k=1..n} A034718(k).
a(n) ~ n^2 * (log(n)^2 + (6*g-1)*log(n) + 6*g^2 - 3*g - 6*g1 + 1/2) / 4, where g is the Euler-Mascheroni constant A001620 and g1 is the first Stieltjes constant A082633. - Vaclav Kotesovec, Sep 09 2018

A318764 Expansion of Product_{i>=1, j>=1, k>=1} ((1 + x^(i*j*k))/(1 - x^(i*j*k)))^(i*j*k).

Original entry on oeis.org

1, 2, 14, 44, 182, 548, 1932, 5632, 17654, 49872, 145020, 395256, 1090044, 2876424, 7606024, 19503312, 49850790, 124543772, 309436980, 755268832, 1831194724, 4376807896, 10387118328, 24359228520, 56720659372, 130737105940, 299256890672, 678941040784
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 03 2018

Keywords

Comments

Convolution of A318413 and A318414.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[((1 + x^(i*j*k))/(1 - x^(i*j*k)))^(i*j*k), {i, 1, nmax/j/k}], {j, 1, nmax/k}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k*Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ (21*Zeta(3))^(1/3) * log(n)^(2/3) * n^(2/3) / 2^(5/3).

A318966 Expansion of e.g.f. Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(1/(i*j*k)).

Original entry on oeis.org

1, 1, 5, 21, 165, 1077, 11457, 103905, 1345257, 15834825, 237535389, 3372509709, 59235634125, 979573962429, 19224990899865, 366788042231193, 8019002662543953, 171360055378885905, 4132946756763614133, 97947895990285022085, 2576516749059849502581, 67124117357620005459141
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(1/(i*j*k)),k=1..21),j=1..50),i=1..50),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(1/(i j k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax} ], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Sum[DivisorSigma[0, d], {d, Divisors[k]}]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (n - 1)! Sum[Sum[Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(tau_3(k)/k), where tau_3 = A007425.
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} tau(j) ) * x^k/k), where tau = number of divisors (A000005).
Showing 1-5 of 5 results.