cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318414 Expansion of Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^(i*j*k).

Original entry on oeis.org

1, 1, 6, 15, 48, 108, 323, 716, 1868, 4217, 10137, 22311, 51477, 110817, 245260, 519918, 1114914, 2318557, 4854952, 9923533, 20335761, 40941170, 82365742, 163413699, 323589060, 633429923, 1236392498, 2390718266, 4606489839, 8805346615, 16768968317, 31713677061, 59747953446
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul((1+x^(i*j*k))^(i*j*k),k=1..55),j=1..55),i=1..55),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[Product[Product[(1 + x^(i j k))^(i j k), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(k Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}]  x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
    nmax = 32; A034718 = Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[A034718[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 31 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*tau_3(k)), where tau_3() = A007425.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^2 * Sum_{j|d} tau(j) ) * x^k/k), where tau() = A000005.
Conjecture: log(a(n)) ~ 3^(2/3) * Zeta(3)^(1/3) * log(n)^(2/3) * n^(2/3) / 2^(5/3). - Vaclav Kotesovec, Sep 02 2018