cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318471 Additive with a(p^e) = A000045(e).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 8, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 4, 3, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 6, 1, 2, 2, 2, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Total@ Fibonacci[FactorInteger[n][[;; , 2]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, May 15 2023 *)
  • PARI
    A318471(n) = vecsum(apply(e -> fibonacci(e),factor(n)[,2]));

Formula

a(n) = A007814(A318472(n)).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{k>=3} Fibonacci(k-2) * P(k) = 0.58264195290963042938..., where P(s) is the prime zeta function. - Amiram Eldar, Oct 09 2023