A318471 Additive with a(p^e) = A000045(e).
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 8, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 4, 3, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 6, 1, 2, 2, 2, 1, 3, 1, 3, 3
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Total@ Fibonacci[FactorInteger[n][[;; , 2]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, May 15 2023 *)
-
PARI
A318471(n) = vecsum(apply(e -> fibonacci(e),factor(n)[,2]));
Formula
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{k>=3} Fibonacci(k-2) * P(k) = 0.58264195290963042938..., where P(s) is the prime zeta function. - Amiram Eldar, Oct 09 2023