cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318438 For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let h(n) = Sum_{k=0..w} b_k * (i-1)^k (where i denotes the imaginary unit); a(n) is the real part of h(n).

Original entry on oeis.org

0, 1, -1, 0, 0, 1, -1, 0, 2, 3, 1, 2, 2, 3, 1, 2, -4, -3, -5, -4, -4, -3, -5, -4, -2, -1, -3, -2, -2, -1, -3, -2, 4, 5, 3, 4, 4, 5, 3, 4, 6, 7, 5, 6, 6, 7, 5, 6, 0, 1, -1, 0, 0, 1, -1, 0, 2, 3, 1, 2, 2, 3, 1, 2, 0, 1, -1, 0, 0, 1, -1, 0, 2, 3, 1, 2, 2, 3, 1, 2
Offset: 0

Views

Author

Rémy Sigrist, Aug 26 2018

Keywords

Comments

See A318439 for the imaginary part of h.
See A318479 for the square of the modulus of h.
The function h corresponds to the interpretation of the binary representation of a number in base -1+i and defines a bijection from the nonnegative integers to the Gaussian integers.
The function h has nice fractal features (see scatterplot in Links section).
This sequence has similarities with A316657.

Crossrefs

Cf. A009116, A318439 (imaginary part), A318479 (norm), A340669 (negation).
Cf. A316657 (base 2+i).

Programs

  • PARI
    a(n) = my (d=Vecrev(digits(n,2))); real(sum(i=1, #d, d[i]*(I-1)^(i-1)))

Formula

a(2^k) = A009116(k) for any k >= 0.

A330714 For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let h(n) = Sum_{k=0..w} b_k * i^k (where i denotes the imaginary unit); a(n) is the square of the modulus of h(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 2, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 4, 2, 5, 0, 1, 1, 2, 2, 5, 1, 4, 1, 2, 0, 1, 1, 2, 4, 5, 2, 1, 5, 4, 0, 1, 1, 2, 1, 0, 2, 1, 2, 5, 5, 8, 1, 2, 4, 5, 1, 4, 2, 5, 0, 1, 1, 2, 1, 0, 2, 1, 4, 1, 5, 2, 2, 1, 1, 0, 5, 2, 4, 1, 0, 1, 1, 2, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[Floor[n/2]]*I + Mod[n, 2]; Table[Abs[a[n]]^2, {n, 0, 100}] (* Amiram Eldar, May 06 2021, after Jean-François Alcover at A131851 *)
  • PARI
    {a(n) = my(d=Vecrev(digits(n, 2))); norm(sum(k=1, #d, d[k]*I^k))}

Formula

a(n) = A131851(n)^2 + A131852(n)^2.
Showing 1-2 of 2 results.