A318489 Number of steps to reach a lower number than starting value in 7x+-1 problem, or 0 if never reached.
0, 1, 12, 1, 8, 1, 4, 1, 4, 1, 42, 1, 8, 1, 4, 1, 4, 1, 23, 1, 20, 1, 4, 1, 4, 1, 12, 1, 16, 1, 4, 1, 4, 1, 282, 1, 12, 1, 4, 1, 4, 1, 229, 1, 50, 1, 4, 1, 4, 1, 8, 1, 35, 1, 4, 1, 4, 1, 8, 1, 50, 1, 4, 1, 4, 1, 46, 1, 8, 1, 4, 1, 4, 1, 225, 1, 8, 1, 4, 1, 4, 1, 35, 1, 16, 1, 4, 1, 4, 1, 46, 1, 27, 1, 4, 1, 4, 1, 16
Offset: 1
Examples
a(5) = 8 because the trajectory is (5, 36, 18, 9, 64, 32, 16, 8, 4, 2, 1, ...) and the first lower number is 4. Thus 8 steps to reach the value 4 starting from the value 5.
Links
- David Barina, Table of n, a(n) for n = 1..10000
- D. Barina, 7x+-1: Close Relative of Collatz Problem, arXiv:1807.00908 [math.NT], 2018.
- K. Matthews, David Barina's 7x+1 conjecture.
Programs
-
C
int a(int n0) { if( n0 == 1 ) return 0; int s = 0; for(int n = n0; n >= n0; s++) { switch(n%4) { case 1: n = 7*n+1; break; case 3: n = 7*n-1; break; default: n = n/2; } } return s; }
-
PARI
a7(n) = {my(m=(n+2)%4-2); if(m%2, 7*n + m, n/2)}; a(n) = if (n==1, 0, my(nb=1, m=n, nm); while((nm=a7(m)) >= n, m = nm; nb++); nb); \\ Michel Marcus, Aug 28 2018
Comments