cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318493 Expansion of 1/(1 - Sum_{i>=1, j>=1} i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 5, 15, 53, 165, 561, 1807, 5993, 19586, 64491, 211466, 695101, 2281614, 7494995, 24610588, 80829373, 265437828, 871738976, 2862815763, 9401768055, 30875971366, 101399191222, 333001988025, 1093603789613, 3591473940515, 11794667169894, 38734550365835, 127207121681103, 417757532953031
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(add(i*j*x^(i*j),j=1..100),i=1..100)),x=0,30): seq(coeff(a,x,n),n=0..29); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[i j x^(i j), {i, 1, nmax}], {j, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[k x^k/(1 - x^k)^2, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[k DivisorSigma[0, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[k DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} k*x^k/(1 - x^k)^2).
G.f.: 1/(1 - Sum_{k>=1} k*d(k)*x^k), where d(k) = number of divisors of k (A000005).
a(0) = 1; a(n) = Sum_{k=1..n} A038040(k)*a(n-k).
a(n) ~ c / r^n, where r = 0.304499876501217750838861744045680232405337905509126... is the root of the equation Sum_{k>=1} k*r^k/(1 - r^k)^2 = 1 and c = 0.44152042515136849968144466258954953693306684400261343177792428746297872748... - Vaclav Kotesovec, Aug 28 2018