A318557 Number A(n,k) of n-member subsets of [k*n] whose elements sum to a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 5, 10, 1, 0, 1, 1, 6, 30, 38, 1, 0, 1, 1, 9, 55, 165, 126, 1, 0, 1, 1, 10, 91, 460, 1001, 452, 1, 0, 1, 1, 13, 138, 969, 3876, 6198, 1716, 1, 0, 1, 1, 14, 190, 1782, 10630, 33594, 38760, 6470, 1, 0, 1, 1, 17, 253, 2925, 23751, 118755, 296010, 245157, 24310, 1, 0
Offset: 0
Examples
A(3,2) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}. A(2,3) = 5: {1,2}, {1,5}, {2,4}, {3,6}, {4,5}. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 5, 6, 9, 10, 13, ... 0, 1, 10, 30, 55, 91, 138, 190, ... 0, 1, 38, 165, 460, 969, 1782, 2925, ... 0, 1, 126, 1001, 3876, 10630, 23751, 46376, ... 0, 1, 452, 6198, 33594, 118755, 324516, 749398, ... 0, 1, 1716, 38760, 296010, 1344904, 4496388, 12271518, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..85, flattened
Crossrefs
Programs
-
Mathematica
nmax = 11; (* Program not suitable to compute a large number of terms. *) A[n_, k_] := A[n, k] = Count[Subsets[Range[k n], {n}], s_ /; Divisible[Total[s], k]]; A[0, _] = 1; Table[A[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Oct 04 2019 *)
Comments