A318560 Number of combinatory separations of a multiset whose multiplicities are the prime indices of n in weakly decreasing order.
1, 1, 2, 2, 3, 4, 5, 3, 8, 7, 7, 8, 11, 12, 15, 5, 15, 17, 22, 14, 27, 19, 30, 13, 27, 30, 33, 26, 42, 37, 56, 7, 44, 45, 51, 34, 77, 67, 72, 25
Offset: 1
Examples
The a(18) = 17 combinatory separations of {1,1,2,2,3}: {11223} {1,1122} {1,1123} {1,1223} {11,112} {12,112} {12,122} {12,123} {1,1,112} {1,1,122} {1,1,123} {1,11,11} {1,11,12} {1,12,12} {1,1,1,11} {1,1,1,12} {1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; Table[Length[Union[Sort/@Map[normize,mps[nrmptn[n]],{2}]]],{n,20}]
Comments