A318565 Number of multiset partitions of multiset partitions of strongly normal multisets of size n.
1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
Offset: 1
Keywords
Examples
The a(2) = 6 multiset partitions of multiset partitions: {{{1,1}}} {{{1,2}}} {{{1},{1}}} {{{1},{2}}} {{{1}},{{1}}} {{{1}},{{2}}}
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Sum[Length[mps[m]],{m,Join@@mps/@strnorm[n]}],{n,6}]
-
PARI
\\ See links in A339645 for combinatorial species functions. seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(9) and beyond from Andrew Howroyd, Dec 30 2020
Comments