A318614 Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n).
1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040
Offset: 1
Keywords
Examples
Singular Value: S(1/2) = 1/sqrt(2). N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N. n | u ================================================== 0 | 0.08544689553344134756293807606337... 1 | 0.23840989875904155311088418238272... 2 | 0.36638282702449450473835851051425... 3 | 0.46595506694324457665483887176081...
References
- E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204.
Links
- Eric Weisstein's World of Mathematics, Plane Division by Ellipses.
- Eric Weisstein's World of Mathematics, Circle Ellipse Intersection.
Programs
-
GAP
a:=[1,6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
Mathematica
RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}]
Comments