A318646 The least Chernick's "universal form" Carmichael number with n prime factors.
1729, 63973, 26641259752490421121, 1457836374916028334162241, 24541683183872873851606952966798288052977151461406721, 53487697914261966820654105730041031613370337776541835775672321, 58571442634534443082821160508299574798027946748324125518533225605795841
Offset: 3
Keywords
Examples
For k=3, m = 1, a(3) = U(3, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1) = 1729. For k=4, m = 1, a(4) = U(4, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1)*(36*1 + 1) = 63973. For k=5, m = 380, a(5) = U(5, 1) = (6*380 + 1)*(12*380 + 1)*(18*380 + 1)*(36*380 + 1)*(72*380 + 1) = 26641259752490421121.
Links
- Amiram Eldar, Table of n, a(n) for n = 3..11
- Jack Chernick, On Fermat's simple theorem, Bulletin of the American Mathematical Society, Vol. 45, No. 4 (1939), pp. 269-274.
- Daniel Suteu, C++ program
- Samuel S. Wagstaff, Jr., Large Carmichael numbers, Mathematical Journal of Okayama University, Vol. 22, (1980), pp. 33-41.
Crossrefs
Programs
-
Mathematica
fc[k_] := If[k < 4, 1, 2^(k - 4)]; a={};Do[v = Join[{6, 12}, 2^Range[k-2]*9]; w = fc[k]; x = v*w; m = 1; While[! AllTrue[x*m + 1, PrimeQ], m++]; c=Times @@ (x*m + 1);AppendTo[a,c], {k, 3, 9}]; a
Comments