cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318658 Denominators of the sequence whose Dirichlet convolution with itself yields A087003, a(2n) = 0 and a(2n+1) = moebius(2n+1).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 8, 1, 16, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 128, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 16, 1, 2, 1, 2, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A005187, A087003, A318657 (numerators), A318659.

Programs

  • PARI
    up_to = 65537;
    A087003(n) = ((n%2)*moebius(n)); \\ I.e. a(n) = A000035(n)*A008683(n).
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA087003(n)));
    A318657(n) = numerator(v318657_18[n]);
    A318658(n) = denominator(v318657_18[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A087003(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318659(n).
a(2n) = 1, a(2n-1) = A046644(2n-1) = A318512(2n-1), for all n >= 1.