A318665 Denominators of the sequence whose Dirichlet convolution with itself yields A064664, the inverse permutation of EKG-sequence.
1, 1, 2, 1, 1, 2, 1, 1, 8, 2, 1, 2, 1, 2, 1, 1, 2, 8, 2, 2, 1, 2, 2, 2, 2, 2, 16, 2, 2, 4, 2, 2, 2, 2, 2, 8, 2, 2, 2, 1, 1, 4, 2, 1, 8, 2, 2, 2, 2, 1, 4, 1, 1, 16, 2, 2, 4, 2, 2, 4, 2, 2, 8, 1, 1, 4, 1, 2, 4, 1, 1, 8, 1, 2, 4, 2, 1, 4, 2, 1, 128, 2, 1, 4, 2, 2, 4, 1, 2, 16, 2, 2, 4, 2, 1, 4, 1, 1, 2, 8, 2, 4, 2, 2, 4
Offset: 1
Links
Programs
-
PARI
v064413 = readvec("b064413_upto65539_terms_only.txt"); \\ From b-file of A064413 prepared previously. A064413(n) = v064413[n]; m064664 = Map(); for(n=1,65539,mapput(m064664,A064413(n),n)); A064664(n) = mapget(m064664,n); up_to = (2^14); DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318664_65 = DirSqrt(vector(up_to, n, A064664(n))); A318664(n) = numerator(v318664_65[n]); A318665(n) = denominator(v318664_65[n]);
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A064664(n) - Sum_{d|n, d>1, d 1.