A318682 a(n) is the number of odd values minus the number of even values of the integer log of all positive integers up to and including n.
-1, -2, -1, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 8, 7, 8, 7, 6, 7, 8, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 13, 12, 11, 12, 13, 14, 13, 14, 13, 14, 15, 14, 15, 16, 17, 16, 15, 14, 15, 16, 15, 14, 15, 14, 15, 16, 17, 18, 17, 16, 17, 18
Offset: 1
Keywords
Examples
a(4) = -1 - 1 + 1 - 1 = -2, since sopfr(1) = 0, sopfr(2) = 2, sopfr(3) = 3, and sopfr(4) = 4.
Links
- Daniel Blaine McBride, Table of n, a(n) for n = 1..100000
- K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294.
- Eric Weisstein's World of Mathematics, Sum of Prime Factors
Crossrefs
Programs
-
Mathematica
Nest[Append[#, #[[-1]] + (-1)^(1 + Total@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[Length@ # + 1] ])] &, {-1}, 79] (* Michael De Vlieger, Sep 10 2018 *)
-
PARI
sopfr(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]*f[k, 2]); a(n) = sum(k=1, n, (-1)^(sopfr(k)+1)); \\ Michel Marcus, Sep 09 2018
-
Python
from sympy import factorint def A318682(n): a_n = 0 for i in range(1, n+1): a_n += (-1)**(sum(p*e for p, e in factorint(i).items())+1) return a_n
Formula
a(n) = a(n-1) + (-1)^(sopfr(n)+1) with a(1) = (-1)^(sopfr(1)+1) = -1.
Comments