A318683 Number of ways to split a strict integer partition of n into consecutive subsequences with equal sums.
1, 1, 1, 2, 2, 3, 5, 5, 7, 8, 12, 12, 18, 18, 26, 27, 37, 38, 53, 54, 73, 76, 100, 104, 136, 142, 183, 192, 244, 256, 327, 340, 424, 448, 558, 585, 722, 760, 937, 983, 1195, 1260, 1544, 1610, 1943, 2053, 2480, 2590, 3107, 3264, 3927, 4106, 4874, 5120, 6134, 6378
Offset: 0
Keywords
Examples
The a(12) = 18 constant-sum split partitions: (12) (7,5) (8,4) (9,3) (10,2) (11,1) (5,4,3) (6,4,2) (6,5,1) (7,3,2) (7,4,1) (8,3,1) (9,2,1) (6)(4,2) (6)(5,1) (5,4,2,1) (6,3,2,1) (6)(3,2,1)
Crossrefs
Programs
-
Mathematica
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]