A318690 Matula-Goebel numbers of powerful uniform rooted trees.
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 81, 83, 97, 100, 103, 121, 125, 127, 128, 131, 151, 196, 216, 225, 227, 241, 243, 256, 277, 289, 311, 331, 343, 361, 419, 431, 441, 484, 509, 512, 529, 541, 563, 625, 661, 691
Offset: 1
Keywords
Examples
The sequence of all powerful uniform rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 31: (((((o))))) 32: (ooooo) 36: (oo(o)(o)) 49: ((oo)(oo))
Links
- Gus Wiseman, The first 96 powerful uniform rooted trees.
Crossrefs
Programs
-
Mathematica
powunQ[n_]:=Or[n==1,If[PrimeQ[n],powunQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@powunQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; Select[Range[100],powunQ]
Comments