A318697 Number of ways to partition a hypertree spanning n vertices into hypertrees.
1, 1, 7, 93, 1856, 49753, 1679441, 68463769, 3273695758, 179710285011, 11141016392749, 769939840667473, 58695964339179805, 4893452980658819151, 442915168219228586581, 43255083632741702266097, 4533695508041747494704359, 507638249638364368312476913
Offset: 1
Keywords
Examples
The a(3) = 7 hypertree partitions: {{{1,2,3}}} {{{1,2},{1,3}}} {{{1,2},{2,3}}} {{{1,3},{2,3}}} {{{1,2}},{{1,3}}} {{{1,2}},{{2,3}}} {{{1,3}},{{2,3}}}
Crossrefs
Programs
-
Mathematica
trct[n_]:=Sum[StirlingS2[n-1,i]*n^(i-1),{i,0,n-1}]; numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; Table[Sum[n^(Length[ptn]-1)*Product[trct[s+1],{s,ptn}]*numSetPtnsOfType[ptn],{ptn,IntegerPartitions[n-1]}],{n,20}]