A318726 Number of integer compositions of n that have only one part or whose consecutive parts are indivisible and the last and first part are also indivisible.
1, 1, 1, 1, 3, 1, 5, 3, 8, 13, 12, 23, 27, 56, 64, 100, 150, 216, 325, 459, 700, 1007, 1493, 2186, 3203, 4735, 6929, 10243, 14952, 22024, 32366, 47558, 69906, 102634, 150984, 221713, 325919, 478842, 703648, 1034104, 1519432, 2233062, 3281004, 4821791, 7085359
Offset: 1
Keywords
Examples
The a(10) = 13 compositions: (10) (7,3) (3,7) (6,4) (4,6) (5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5) (3,2,3,2) (2,3,2,3) The a(11) = 12 compositions: (11) (9,2) (2,9) (8,3) (3,8) (7,4) (4,7) (6,5) (5,6) (5,2,4) (4,5,2) (2,4,5)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,({_,x_,y_,_}/;Divisible[x,y])|({y_,_,x_}/;Divisible[x,y])]&]//Length,{n,20}]
-
PARI
b(n,k,pred)={my(M=matrix(n,n)); for(n=1, n, M[n,n]=pred(k,n); for(j=1, n-1, M[n,j]=sum(i=1, n-j, if(pred(i,j), M[n-j,i], 0)))); sum(i=1, n, if(pred(i,k), M[n,i], 0))} a(n)={1 + sum(k=1, n-1, b(n-k, k, (i,j)->i%j<>0))} \\ Andrew Howroyd, Sep 08 2018
Formula
a(n) = A328598(n) + 1. - Gus Wiseman, Nov 04 2019
Extensions
a(21)-a(28) from Robert Price, Sep 08 2018
Terms a(29) and beyond from Andrew Howroyd, Sep 08 2018
Name corrected by Gus Wiseman, Nov 04 2019