A318727 Number of integer compositions of n where adjacent parts are indivisible (either way) and the last and first part are also indivisible (either way).
1, 1, 1, 1, 3, 1, 5, 3, 5, 13, 9, 23, 15, 37, 45, 63, 115, 131, 207, 265, 415, 603, 823, 1251, 1673, 2521, 3519, 5147, 7409, 10449, 15225, 21497, 31285, 44719, 64171, 92315, 131619, 190085, 271871, 391189, 560979, 804265, 1155977, 1656429, 2381307, 3414847
Offset: 1
Keywords
Examples
The a(10) = 13 compositions: (10) (7,3) (3,7) (6,4) (4,6) (5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5) (3,2,3,2) (2,3,2,3)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,({_,x_,y_,_}/;Divisible[x,y]||Divisible[y,x])|({y_,_,x_}/;Divisible[x,y]||Divisible[y,x])]&]//Length,{n,20}]
-
PARI
b(n,k,pred)={my(M=matrix(n,n)); for(n=1, n, M[n,n]=pred(k,n); for(j=1, n-1, M[n,j]=sum(i=1, n-j, if(pred(i,j), M[n-j,i], 0)))); sum(i=1, n, if(pred(i,k), M[n,i], 0))} a(n)={1 + sum(k=1, n-1, b(n-k, k, (i,j)->i%j<>0&&j%i<>0))} \\ Andrew Howroyd, Sep 08 2018
Extensions
a(21)-a(28) from Robert Price, Sep 07 2018
Terms a(29) and beyond from Andrew Howroyd, Sep 08 2018