A318728 Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose adjacent parts (including the last with first) are coprime.
1, 2, 3, 4, 6, 9, 13, 22, 34, 58, 95, 168, 280, 492, 853, 1508, 2648, 4715, 8350, 14924, 26643, 47794, 85779, 154475, 278323, 502716, 908913, 1646206, 2984547, 5418653, 9847190, 17916001, 32625618, 59470540, 108493150, 198094483, 361965239, 661891580, 1211162271
Offset: 1
Keywords
Examples
The a(7) = 13 cyclic compositions with adjacent parts coprime: 7, 16, 25, 34, 115, 1114, 1213, 1132, 1123, 11113, 11212, 111112, 1111111.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
Formula
a(n) = A328597(n) + 1 for n > 1. - Andrew Howroyd, Oct 27 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018
Name corrected by Gus Wiseman, Nov 04 2019