A318729 Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose consecutive parts (including the last with first) are indivisible.
1, 1, 1, 1, 2, 1, 3, 2, 4, 6, 6, 8, 11, 19, 21, 30, 41, 59, 79, 112, 157, 219, 305, 430, 605, 860, 1210, 1727, 2424, 3463, 4905, 7001, 9954, 14211, 20271, 28980, 41392, 59254, 84800, 121540, 174163, 249932, 358578, 515091, 739933, 1063827, 1529767, 2201383
Offset: 1
Keywords
Examples
The a(13) = 11 cyclic compositions with successive parts indivisible: (13) (2,11) (3,10) (4,9) (5,8) (6,7) (2,4,7) (2,6,5) (2,8,3) (3,6,4) (2,3,5,3)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]]&]],{n,20}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0))); vector(n, n, 1 + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
Formula
a(n) = A328600(n) + 1. - Andrew Howroyd, Oct 27 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018
Name corrected by Gus Wiseman, Nov 04 2019